線分図は,問題の数量を線分の長さで表し,数量と数量の関係を視覚的にわかりやすく表したものです。次のような図がそれです。
線分図は,量の関係が線分で視覚的に表されているので,問題の数量の関係を見抜くのに極めて有効な図といえます。必要に応じて必要な線分図がかけるようにすることが大切です。
ところで,数量の関係を見抜くのは,何も線分図だけではありません。第5学年では,下にあるような数量間の関係を矢印を使った図で表した関係図が必要に応じて取り上げられています。
割合の学習では,「□倍」の関係を明確に示した関係図が有効ですが,うまくかくことができない場合には,量的イメージをとらえやすい線分図を使うとよいでしょう。
問題解決にあたって思考などの手助けをする具体的処理のことを,基礎操作とよぶことがあります。線分図や関係図などの図表示はこの1 つです。この他,表やグラフ,式に表すこと,記録・分類する手続き,さらに広く,計算,計量などの操作も基礎操作に入ります。
ストラテジーという用語も使われますが,これは問題解決の構想の立て方や解決方法を示すもので「方略」ともいわれます。基礎操作はもちろん,思考法もこのストラテジーの中に混在していると考えられます。