数学Ⅰの2次関数の最大値・最小値において,軸や定義域が固定される問題は解けるが,軸や定義域に変数aなどの文字を含む問題になると苦手な生徒も多い。Grapesなどのソフトを用いて,プロジェクターでグラフの変化をスクリーンに示す方法もあるが,映像を眺めているだけでは,軸と定義域の位置関係のイメージをつかめない生徒もいる。オリジナルの教具を使用して,生徒ひとりひとりが活動的に問題に取り組め,さらにイメージを視覚的にとらえることができて,生徒の反応も比較的良かった授業の実践例を紹介したい。
2次関数のグラフの軸に変数aが含まれる問題において,予め用意しておいた2次関数のグラフが描かれた透明フィルムの教具(グラフプレート)を,生徒各自がプリントの座標平面上で動かしながら,軸と定義域の位置関係を視覚的につかませ,場合分けの数値を発見させる。
授業の冒頭で,基本問題の最大値・最小値を求めさせ,軸と定義域の位置関係を確認させた後,軸に変数aが含まれる問題を解かせる。グラフプレートを動かしながら自由に考察させる時間を設け,生徒各自の考えをまとめさせる。必要があれば,黒板でも大型のグラフプレートを動かし,理解が不十分な生徒にヒントを与える。
【例題1】
座標平面上にある定義域が描かれている。2次関数のグラフプレートを動かしながら,軸と定義域の位置関係が変化するにつれて,関数の最小値および最大値がどうなるか考察せよ。
【例題1】は次の問題を解く前のウォーミングアップとして設けた。数学的用語を用いて説明できない生徒もいたが,ほとんどの生徒が軸と定義域の位置関係から「場合分け」のイメージをつかんでいた。このような準備段階を経て,【例題2】, 【例題3】に進んだ。
【例題2】
2次関数 y=x2 -2ax +a2+1(0≦x≦2)の最小値を求めよ。ただし,a は定数とする。
【例題3】
2次関数 y=x2 -2ax +a2+1(0≦x≦2)の最大値を求めよ。ただし,a は定数とする。
ワークシートの感想記入欄に「実力テストに同じような問題が出題された時,どのように解答すれば良いのかまったく分からなかった。でも,今日の授業のようにグラフプレートを自分で動かすことによって,場合分けのコツがつかめた。」等の生徒の意見が多数見受けられた。この授業前に実施された実力テストで同じような問題が出題されたが,正答率は低かった。しかし,授業後の期末テストで出題した類題の正答率は上がった。グラフプレートによる指導の効果がある程度あったと思われる。
2次関数のグラフプレートを座標平面上で動かすことで,ほとんどの生徒が軸と定義域の位置関係について考察し,そのイメージはつかめていた。
しかしながら,そのイメージを数学的用語で表現する段階になると,きちんと表現できない生徒も多かった。生徒に「具体から抽象化への思考を促す」機会をもう少し設けたかったが,50分授業では時間がなく,こちらからヒントを与える場面も多々あった。授業展開の工夫が必要である。これらは,今後の検討としたい。また,今後も生徒の興味を引き授業の成果も上がるような教具の開発に努めたい。