5年

驚きや美しさのある算数    
〜児童の心に印象深く残る教材の工夫〜    
埼玉県戸田市立戸田第一小学校
杉森 雅之

1.はじめに

クリックすると拡大図が表示されます。
図1

 平成20年度全国学力・学習状況調査の検証問題の中に図1のようなひし形の対角線に関するものがある。設問の趣旨は,次のようなものである。

(1) ひし形の4つの辺の長さが等しいことを基に,1本の対角線で分割したときにできる三角形を,二等辺三角形ととらえることができるかどうかをみる。
(2) ひし形の対角線が互いに垂直に交わることを基に,2本の対角線で分割したときにできる三角形を,直角三角形ととらえることができるかどうかをみる。
  (文部科学省HPより引用)

 この学習の指導に当たっては,紙にひし形をかいて切り抜き折り重ねたり,辺の長さをコンパスを用いて測定したりして,4つの辺の長さが等しい四角形であることを理解できるようにすることが必要である。

 児童が知識として会得するものは,作業をするなど経験から来るものが多い。さらに発見した喜びや驚き,意外性からくる不思議さや美しさなどがきっかけとなりその印象は一層大きくなる。そのため,常日頃から算数の中にある数理を驚きや美しさの中から見いだせるように意識して取り組むようにしている。ひし形などの理解を深めるための取組の一端が本実践である。


2.児童の実態

 児童の心に残る教材を開発するには児童の実態をよく知る必要がある。本実践の対象児童は作業が好きで,図を描いたり,色分けしたりすることがとても好きな児童である。また,総合的な学習の時間の活動で地域の高齢者福祉施設と交流したことで折り紙の経験が豊富である。特に鶴は何度も折り,大きな紙はもちろんかなり小さな紙で折る児童がいるほどである。


3.実践

実践例1 「垂直・平行」のかき方の習熟指導

垂直 平行

図2

 これは垂直の定義を学習した後に,垂直な線の書き方を学習したときの習熟の学習である。左右の2本の直線のみ記入してあるワークシートを配布し,(図2赤線)その2直線に対する垂直な直線のかき方をたくさん練習した。この活動は楽しく,各自がそれぞれのペースで熱心に取り組み,最後に色をつけさせると,同じような形の並びに着目する児童も出て,幾何学模様の美しさに声を挙げる児童もいた。

 その後,平行の学習も同様に行ったが,同じような模様でも中にできる平行四辺形の向きが異なるようにでき,その違いにも目を向け児童は楽しみながら習熟を行うことができた。


実践例2 「対角線」の指導〜正方形とひし形の対角線の特徴に目をつけて〜

学習の流れ(○教師の発問 ◇児童の反応
地域の方に折り紙でつるを折ったね。今日はいろいろな形の折り紙でつるを折ってみよう!

どの形で折れるかな?
ひし形は折れるぞ!
面白い形のつるができた!
どうして?
同じようにできたのは正方形とひし形だね。
正方形とひし形の特徴に秘密が ありそうだ。


正方形とひし形の似ているところを探してみよう


4つの辺の長さが等しい
折り目がぴったり重なったよ。

「対角線」の定義の学習

正方形とひし形は対角線が垂直に交わるのだね。


4.おわりに

最後に児童に見せた鶴
 
さて,どんな形から折ったのでしょうか・・・?
 

 筆者が小学生の頃を,印象的だった算数の授業は,まずその雰囲気が楽しかったことを覚えている。本実践で,首の長い鶴や羽の長い鶴に児童は笑顔になった。驚きや美しさを感じるとき児童はその授業をよく覚えるものである。本実践では児童に教材や学習内容を印象づけられただけでなく,そこから出た疑問を学級全体で探究することができたことが大きな成果である。冒頭の検証問題の正答率は(1)77.6%(2)64.3%であるが,この問題の無答率は(1)6.2%(2)11.2%と他の設問に比べ高い。児童が課題に対して興味を持ち,「やってみよう。」という気持ちを常日頃から持ち,無答を無くし,正答が増やすことができれば本実践の試みは達成されたといえる。


前へ

次へ
閉じる