直線の垂直・平行の関係

平面における直線の垂直・平行は,2本の直線の位置関係を表しています。位置関係ですので,2 本の直線の長さには,全く関係ありません。位置関係を成立させる条件だけを保っていれば,それで十分です。
その条件として示されてくるのが,垂直の場合であれば,「2つの直線が直角に交わる」ということです。この条件を満たしさえすれば,2つの直線は常に垂直の位置関係になるわけです。

もちろん,2つの直線が実際には交わっていなくても,伸ばしていったときに直角に交われば,この2つの直線はやはり垂直になるわけです。
一方,平行は,はじめは「どこまでいっても交わらない2つの直線」として受け止められがちです。平行のイメージからすれば,確かに「どこまでいっても交わらない2つの直線」ですが,しかし,この表現では,「どこまでいっても交わらない」という保証を,実証的にも理論的にも得ることができません。
ですから,観点を変えて,垂直の概念を用いて,次のように概念規定を図っていくことになります。

単元名を「平行・垂直……」としないで,「垂直・平行……」というように,垂直を先に取り上げているのも,垂直でもって平行の概念を規定しようという事情があるからです。